应用思考-教育技术论坛
标题:
紫外光谱
[打印本页]
作者:
王翰
时间:
2023-6-13 11:46
标题:
紫外光谱
光谱的产生
在紫外光谱中,波长单位用nm(
纳米
)表示。紫外光的波长范围是10~380 nm,它分为两个区段。波长在10~200 nm称为远紫外区,这种波长能够被空气中的氮、氧、
二氧化碳
和水所吸收,因此只能在
真空
中进行研究工作,故这个区域的吸收光谱称真空紫外,由于技术要求很高,目前在有机化学中用途不大。波长在200~380 nm称为近紫外区,一般的紫外
光谱
是指这一区域的
吸收光谱
。波长在400~750 nm范围的称为
可见光谱
。常用的
分光光度计
一般包括紫外及可见两部分,波长在200~800 nm(或200~1000 nm)。
分子内部的运动有转动、振动和电子运动,相应状态的能量(状态的本征值)是
量子化
的,因此分子具有
转动能级
、
振动能级
和
电子能级
。通常,分子处于低能量的基态,从外界吸收能量后,能引起分子能级的跃迁。电子能级的跃迁所需
能量
最大,大致在1~20 eV(电子伏特)之间。根据量子理论,相邻能级间的能量差ΔE、
电磁辐射
的频率ν、波长λ符合下面的关系式
ΔE=hν=h×c/λ
式中h是
普朗克常量
,为6.624×10⁻³⁴J·s=4.136×10⁻¹⁵ eV·s;c是
光速
,为2. 998×10¹⁰ cm/s。应用该公式可以计算出
电子跃迁
时吸收光的波长。
许多有机分子中的价电子跃迁,须吸收波长在200~1000 nm范围内的光,恰好落在紫外-可见光区域。因此,紫外吸收光谱是由于分子中价电子的跃迁而产生的,也可以称它为
电子光谱
。
[1]
跃迁类型
有机化合物分子中主要有三种电子:形成
单键
的σ电子、形成
双键
的π电子、未成键的
孤对电子
,也称n电子。基态时σ电子和π电子分别处在σ
成键轨道
和π成键轨道上,n电子处于
非键轨道
上。仅从能量的角度看,处于低能态的电子吸收合适的能量后,都可以跃迁到任一个较高能级的
反键轨道
上。跃迁的情况如下图所示:
上图中虚线下的数字是跃迁时吸收能量的大小顺序,该顺序也可以表示为:
各种电子跃迁的相对能量 [1]
n→π*<π→π*<n→σ*<π→σ*<σ→π*<σ→σ*
即n→π*的跃迁吸收能量最小。实际上,对于一个非共轭体系来讲,所有这些可能的跃迁中,只有n→π*的跃迁的能量足够小,相应的吸收光波长在200~800 nm范围内,即落在近紫外-可见光区。其它的跃迁能量都太大,它们的吸收光波长均在200 nm以下,无法观察到紫外光谱。但对于共轭体系的跃迁,它们的吸收光可以落在近紫外区。
根据上图,可以认为:
烷烃
只有
σ键
,只能发生σ→σ*的跃迁。含有重键如C=C,C≡C,C=O,C=N等的化合物有σ键和
π键
,有可能发生σ→σ*,σ→π*,π→π*,π→σ*的跃迁。分子中含有氧、
卤素
等
原子
时,因为它们含有n电子,还可能发生n→π*、n→σ*的跃迁。
一个允许的跃迁不仅要考虑能量的因素,还要符合
动量守恒
(跃迁过程中光量子的能量不转变成振动的动能)、自旋动量守恒(电子在跃迁过程中不发生自旋翻转),此外,还要受轨道对称件的制约。即使是允许的跃迁,它们的跃迁概率也是不相等的。有机分子最常见的跃迁是σ→σ*,π→π*,n→σ*,n→π*的跃迁。
电子的跃迁可以分成三种类型:基态成键轨道上的电子跃迁到激发态的反键轨道称为N→V跃迁,如σ→σ*,π→π*的跃迁。杂原子的
孤对电子
向反键轨道的跃迁称为N→Q跃迁,如n→σ*,n→π*的跃迁。还有一种N→R跃迁,这是σ键电子逐步激发到各个高能级轨道上,最后变成分子离子的
跃迁
,发生在高真空紫外的远端。
[1]
光谱图
[url=]
编辑[/url]
[url=]
播报[/url]
乙酸苯酯的紫外光谱图 [1]
右图是
乙酸苯酯
的紫外
光谱图
。
紫外光谱图提供两个重要的数据:吸收峰的位置和吸收光谱的吸收强度。从图中可以看出,化合物对电磁辐射的吸收性质是通过一条吸收曲线来描述的。图中以波长(单位nm)为横坐标,它指示了吸收峰的位置在260 nm处。纵坐标指示了该吸收峰的吸收强度,吸光度为0.8。
吸收光谱的吸收强度是用Lambert(朗伯)—Beer(比尔)定律来描述的,这个定律可以用下面的公式来表示:
A=lg(I
0
/I)=kcl=lg(1/T)
式中
A
称为
吸光度
(absorbance)。
I
0
是入射光的强度,
I
是透过光的强度,
T
=I/I
0
为
透射比
(transmiπance),又称为透光率或透过率,用百分数表示。
l
是光在溶液中经过的距离(一般为吸收池的长度)。
c
是吸收溶液的浓度。
κ
=
A
/(
cl
),称为
吸收系数
(absorptivity)。若
c
以mol/L为单位,l以cm为单位,则
κ
称为
摩尔消光系数
或摩尔吸收系数,单位为c㎡·mol(通常可省略)。
A,T,(1-T)(吸收率),κ,lgκ都能作为紫外光谱图的纵坐标,但最常用的是
κ
,lg
κ
。上图是以吸光度
A
为纵坐标的紫外光谱图,下面四幅图是以T,1-T,κ,lgκ为纵坐标的紫外光谱图。由图可知,透过率与吸收率正好相反,如吸收率为20%,透过率恰好为80%。
最大吸收时的波长(
λ
max
)为紫外的吸收峰,在以吸光度、
κ
,lg
κ
、吸收率为纵坐标的谱图中,
λ
max
处于吸收曲线的最高峰顶,而在以透过率为纵坐标的谱图中,
λ
max
处于曲线的最低点。紫外吸收的强度通常都用最大吸收峰的
κ
值即
κ
max来衡量。在多数文献报告中,并不绘制出紫外光谱图,只是报道化合物最大吸收峰的波长及与之相应的摩尔消光系数。例如CH₃I的紫外吸收数据为
λ
max
258 nm(365),这表示吸收峰的波长为258 nm,相应的摩尔消光系数为365。
紫外光谱的测定大都是在溶液中进行的,绘制出的吸收带大都是
宽带
,这是 因为分子振动能级的能级差为0.05~1 eV,转动能级的能差小于0.05 eV,都远远低于电子
能级
的能差,因此当电子能级改变时,振动能级和转动能级也不可避免地会有变化,即电子光谱中不但包括电子跃迁产生的谱线,也有振动谱线和转动谱线,分辨率不高的仪器测出的谱图,由于各种谱线密集在一起,往往只看到一个较宽的吸收带。若紫外光谱在惰性溶剂的稀溶液或气态中测定,则图谱的吸收峰上因振动吸收而会表现出锯齿状精细结构。降低温度可以减少振动和转动对吸收带的贡献, 因此有时降温可以使吸收带呈现某种单峰式的电子跃迁。溶剂的极性对吸收带的形状也有影响,通常的规律是溶剂从非极性变到极性时,精细结构逐渐消失,图谱趋向平滑。
[1]
电子跃迁
[url=]
编辑[/url]
[url=]
播报[/url]
有机化合物
饱和烃分子是只有C—C键与C—H键的分子,只能发生σ→σ*跃迁,由于σ电子不易激发,故跃迁需要的能量较大,即必须在波长较短的辐射照射下才能发生。如CH
4
的σ→σ*跃迁在125 nm,乙烷的σ→σ*跃迁在135 nm,其它饱和烃的吸收一般波长在150 nm左右,均在远紫外区。
如果
饱和烃
中的氢被
氧
、氮、卤素等原子或基团取代,这些原子中的n轨道的电子可以发生n→σ*跃迁。见下图。
下表列举了一些能进行跃迁的化合物。
n→σ*跃迁 [1]
一些化合物发生n→σ*跃迁时的吸收光化合物
CH₃Cl
CH₃OH
CH₃OCH₃
CH₃Br
CH₃NH₂
CH₃I
λ
max
172(弱)
183(150)
185(2520)
204(200)
215(600)
258(365)
从上表可以看出,C—O(醇、醚),C-Cl等基团的n→σ*跃迁,吸收光的波长小于200 nm,在真空紫外,而C一Br,C一I,C-NH₂等基团的n→σ*跃迁,吸收光的波长大于200 nm,可以在近紫外区看到不强的吸收。这些化合物在吸收光谱上的差别,主要是由于原子的电负性不同,原子的电负性强,对电子控制牢,激发电子需要的能量大,吸收光的波长短;反之,原子的
电负性
较弱,对电子控制不牢,激发电子需要的能量较小,可以在近紫外区出现吸收。此外,分子的可极化性对其吸收光的波长也有一定的影响。可极化性大的,吸收光的波长也较长,n→σ*跃迁的κ值一般在几百以下。
由于饱和烃、醇、醚等在近紫外区不产生吸收,一般用
紫外-可见分光光度计
无法测出,因此在紫外光谱中常用作溶剂。
[1]
脂肪族化合物
1.π→π*跃迁
C=C双键可以发生π→π*跃迁,由于
原子核
对π电子的控制不如对σ电子牢,跃迁所需的能量较σ电子小。所以→π*跃迁κ值较大,在5000~100000左右,但是只有一个C=C双键的跃迁出现在170~200 nm处,在真空紫外吸收,一般的分光光度计不能观察到。例如乙烯的π→π*跃迁,
λ
max
= 185 nm(κ=10000),在近紫外区不能检出,同样C≡C与C≡N等π→π*跃迁的吸收亦小于200 nm。
如果分子中存在两个或两个以上的双键(包括三键)形成的共轭体系,π电子处在离域的分子轨道上,与定域轨道相比,占有电子的成键轨道的最高能级与未占有电子的反键轨道的最低能级的能差减小,使π→π*跃迁所需的能量减少,因此吸收向长波方向位移。消光系数也随之增大,例如
1,3-丁二烯
分子中两对π电子填满π
1
与π
2
成键轨道,π
3
与T4反键轨道是空的,当电子吸收了所需的光能后便会发生从π
2
到π
3
的跃迁,见下图。
由图可知,在这种分子中,电子可以有多种跃迁,但是在有机分子中比较重要的是能量最低的跃迁,因为这种跃迁在近紫外区吸收,1,3-丁二烯的能量最低跃迁是π
2
→π
3
跃迁,其
λ
max
=217 nm(
κ
= 21000),而其它跃迁能阶相差较高,需要能量较大,在真空紫外吸收。随着共轭体系逐渐增长,跃迁能阶的能差逐渐变小,吸收愈向长波方向位移,由近紫外可以转向可见光吸收(见下表)。
多烯化合物的吸收带化合物
双键
λ
max/nm(
κ
)
颜色
乙烯
1
185(10,000)
无色
丁二烯
2
217(21,000)
无色
1,3,5-己三烯
3
285(35,000)
无色
癸五烯
5
335(118,000)
淡黄
二氢-β-胡萝卜素
8
415(210,000)
橙黄
番茄红素
11
470(185,000)
红
因为共扼体系吸收带的波长在近紫外,因此在紫外光谱的应用上,占有重要地位,对于判断分子的结构,非常有用。
[1]
2.n→π*跃迁
有些基团存在双键和孤电子对,如C=O,N=O,C=S,N=N等,这些基团除了可以进行π→π*跃迁,有较强的吸收外,还可进行n→π*跃迁,这种跃迁所需能量较少,可以在近紫外或可见光区有不太强的吸收,
κ
值一般在十到几百。例如脂肪醛中C=O的π→π*跃迁吸收约210 nm,n→π*跃迁吸收约290 nm,见下左图。
如果这些基团与C=C共轭,形成含有杂原子的共轭体系,与C=C—C=C共轭类似,可以形成新的成键轨道与反键轨道,使与π→π*与n→π*的跃迁能级的能差减小,吸收向长波方向位移,例如
2-丁烯醛
的π
2
→π
3
和n→π
3
跃迁与脂肪醛相应的跃迁比较,吸收均向长波位移,见下右图。
脂肪醛的π→π*和n→π*跃迁 [1]
2-丁烯醛的π2→π3和n→π3跃迁 [1]
下表列举了常见的n→π*跃迁化合物的吸收带以及不同类型共轭分子的吸收带。
—些化合物的n→π*π→π*跃迁的吸收带化合物
基团
π→π*
λ
max/nm(
κ
)
n→π*
λ
max/nm(
κ
)
醛
—CHO
~210(强)
285~295(10~30)
酮
羰基
~195(1000)
270~285()
硫酮
~200(强)
~400(弱)
硝基化合物
—NO₂
~210(强)
~270(10~20)
亚硝酸酯
—ONO
~220(2000)
~350(0~80)
硝酸酯
—ONO₂
——
~270(10~20)
2-丁烯醛
CH₃CH=CHCHO
[2]
~217(16,000)
321(20)
联乙酰
O=CH-CH=O
——
435(18)
2,4-己二烯醛
CH₂CH=CHCH=CHCHO
[3]
~263(27,000)
——
从上表可以看出n→π*跃迁的值很小,一般是由十到几百
κ
值小的原因,可以从羰基的轨道结构得到解释(见右图)。从图中羰基的轨道图中看到,n轨道的电子与π电子集中在不同的空间区域,因此,尽管n→π*跃迁需要的能量较低,由于在不同的空间,故n轨道的电子跃迁到π轨道的可能性是比较小的,产生跃迁的概率不大。由于
κ
值是由电子跃迁的概率决定的,所以n→π*跃迁的
κ
值很小,这种跃迁称为禁忌跃迁,与n→π*跃迁比较
κ
值要小2~3个数量级。根据n→π*跃迁显示弱的吸收带,同时根据吸收位置,可以预示某些基团的存在,在结构测定中相当有用。
[1]
芳香族化合物
芳香族化合物
都具有环状的共轭体系,一般来讲,它们都有三个吸收带。芳香族化合物中最重要的是苯,苯的带Ⅰλmax=184 nm(
κ
=47000),在真空紫外。带Ⅱ
λ
max
=204 nm(
κ
=6900),带Ⅲ
λ
max
=255 nm(
κ
=230)。下图所示为苯的带Ⅲ在255 nm处的吸收。因为电子跃迁时伴随着振动能级的跃迁,因此将带Ⅲ弱的吸收分裂成一系列的小峰,吸收最高处为一系列尖峰的中
欢迎光临 应用思考-教育技术论坛 (http://etthink.com/)
Powered by Discuz! X3.4